

Raycus Cutting Parameters

1.1.RFL-C1000 Cutting Parameter

Fiber Core:25 µ m Focus:125mm

		.23 F III	FI C1000		nuous I sa	on (25		
	1	K	rL-C1000	Conti	nuous Las	er (25µm))• 	
Material	Thickness	Speed (m/min)	Power (w)	Gas	Pressure (bar)	Nozzle (mm)	Focus Position (mm)	Cutting Height (mm)
	0.8	18	1000	N ₂ /	10	1.5S	0	1
	1	10	1000	Air	10	1.5S	0	1
	2	4			2	1.2D	+3	0.8
	3	3			0.6	1.2D	+3	0.8
Carbon Steel	4	2.3			0.6	1.2D	+3	0.8
	5	1.8	1000		0.6	1.2D	+3	0.8
	6	1.5	1000	O ₂	0.6	1.5D	+3	0.8
	8	1.1			0.6	1.5D	+3	0.8
	10	0.8			0.6	2.5D	+3	0.8
	0.8	20			12	1.5S	0	0.8
	1	13			12	1.5S	0	0.5
	2	6			12	2.08	-1	0.5
Stainless	3	3	1000	N_2	12	3.08	-1.5	0.5
Steel	4	1			14	3.08	-2	0.5
	5	0.6			16	3.5S	-2.5	0.5
	0.8	18			12	1.5S	0	0.8
	1	10		N ₂	12	1.5S	0	0.5
Aluminium	2	5	1000		14	2.0S	-1	0.5
	3	1.5			16	3.0S	-1.5	0.5
	1	9			12	2.08	0	0.5
Brass	2	2	1000	N_2	14	2.08	-1	0.5
	3	0.8			16	3.08	-1.5	0.5

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, mass production and processing are not recommended. It is recommended to use higher power lasers.

1.2 25µm perforation reference for single module RFL-C1000 core.

RFL-C1000. Parameters of 10mm carbon steel oxygen perforation (for reference only)

	Power W	Duty Cycle	Frequency Hz	Nozzle Height	Pressure bar		Punching Time	Stop Light Blowing
	VV	70	nz	mm	Dar	mm	ms	ms
High	1000	100	100	12	1	0	100	
								50
Middle	1000	45	100	8	0.6	-4	600	
								50
Low	1000	40	100	4	0.6	-5	2500	

1.3. Parameters of nitrogen perforation for 5mm stainless steel (for reference only)

	Power W	Duty Cycle	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching time ms	Stop Light Blowing
								ms
High	1000	100	1000	12	10	0	100	
								0
Middle	1000	50	1000	10	10	-5	500	
								0
Low	1000	45	1000	4	10	-6	1000	

2.1 RFL-C1500S Cutting Parameter

Fiber Core:50µm Focus:125mm

Fiber Core:50µm Focus:125mm											
		R	FL-C150	0S continu	uous laser ((50μm).					
Material	Thickness	Speed	Power	Gas	Pressure	Nozzle	Focus Position	Cutting Height			
	(mm)	(m/min)	(W)		(Bar)	(mm)	(mm)	(mm)			
	1	20	1500	N ₂ /Air	10	1.5S	0	1			
	2	5			2	1.2D	+3	0.8			
	3	3.6			0.6	1.2D	+3	0.8			
	4	2.5		O ₂	0.6	1.2D	+3	0.8			
	5	1.8			0.6	1.2D	+3	0.8			
	6	1.4			0.6	1.5D	+3	0.8			
	8	1.2	1500		0.6	1.5D	+3	0.8			
Carbon steel	10	1			0.6	2.0D	+2.5	0.8			
	12	0.8			0.6	2.5D	+2.5	0.8			
	14	0.65			0.6	3.0D	+2.5	0.8			
	16	0.5			0.6	3.0D	+2.5	0.8			
	1	20			10	1.58	0	0.8			
	2	7			12	2.08	-1	0.5			
Stainless steel	3	4.5	1500	N_2	12	2.58	-1.5	0.5			
	5	1.5			14	3.08	-2.5	0.5			
	6	0.8			16	3.08	-3	0.5			
	1	18			12	1.58	0	0.5			
Aluminium (Al)	2	6	1500	N ₂	14	2.08	-1	0.5			
(11)	3	2.5	1000	1 12	14	2.58	-1.5	0.5			
	4	0.8			16	3.08	-2	0.5			
	1	15			12	1.58	0	0.5			
Brass	2	5	1500	N ₂	14	2.08	-1	0.5			
	3	1.8			14	2.58	-1.5	0.5			

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, mass production and processing are not recommended. It is recommended to use higher power lasers.

2.2. The reference of single RFL-C1500S core 50 μ m perforation.

RFL-C1500S.Parameters of 16mm carbon steel oxygen perforation (for reference only).

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching time	Stop Light
	W	%	Hz	mm	bar	mm	ms	Blowing ms
High	1000	100	100	12	1	0	100	
								50
Middle	1000	45	100	8	0.6	-4	600	
								50
Low	1000	40	100	4	0.6	-5	2500	

2.3. RFL-C1500S. Parameters of 6mm stainless steel nitrogen perforation (Reference)

only)

	Power W	Duty Cycle	Frequency Hz	Nozzle Height	Pressure Bar	Focus mm	Punching Time	Stop Light Blowing
				mm			ms	ms
High	1000	100	1000	12	10	0	100	
								0
Middle	1000	50	1000	8	10	-4	500	
								0
Low	1000	45	1000	4	10	-6	1000	

5

Website: figtekindustry.com.au Email: info@figtek.com.au

3.1.RFL-C2000S Cutting Parameter

Fiber Core: 50μ m Focus: 125mm

RFL-C2000S continuous laser (50µm).

Material	Thickness (mm)	Speed (m/min)	Power W	Gas	Pressure (bar)	Nozzle (mm)	Focus Position (mm)	Cutting Height (mm)
	1	25		N2/	10	1.58	0	1
	2	9	2000	Air	10	2.08	-1	0.5
	2	5.2			1.6	1.0D	+3	0.8
	3	4.2			0.6	1.0D	+3	0.8
	4	3			0.6	1.0D	+3	0.8
	5	2.2			0.6	1.2D	+3	0.8
	6	1.8			0.6	1.2D	+3	0.8
	8	1.3			0.5	2.0D	+2.5	0.8
	10	1.1			0.5	2.0D	+2.5	0.8
	12	0.9			0.5	2.5D	+2.5	0.8
Carbon	14	0.8	2000	O2	0.5	3.0D	+2.5	0.8
Steel	16	0.7			0.6	3.5D	+2.5	0.8
	18	0.5			0.6	4.0D	+3	0.8
	20	0.4			0.6	4.0D	+3	0.8
	1	28			10	1.58	0	0.8
	2	10			12	2.08	-1	0.5
	3	5			12	2.08	-1.5	0.5
	4	3			14	2.58	-2	0.5
Stainless	5	2	2000	N2	14	3.08	-2.5	0.5
Steel	6	1.5			14	3.08	-3	0.5
	8	0.6			16	3.08	-4	0.5
	1	20			12	1.58	0	0.8
Aluminium	2	10		N2	12	2.08	-1	0.5
(Al)	3	4	2000		14	2.08	-1.5	0.5
	4	1.5			14	2.58	-2	0.5
	5	0.9			16	3.08	-2.5	0.5
	6	0.6			16	3.08	-3	0.5
	1	18			12	1.58	0	0.8

	2	8			12	2.08	-1	0.5
	3	3			14	2.58	-1.5	0.5
Brass	4	1.3	2000	N2	16	3.0S	-2	0.5
	5	0.8			16	3.08	-2.5	0.5

Note: It is recommended to use air or nitrogen to cut carbon steel 1 and 2 mm. The cutting speed is faster than that of oxygen, and there will be slight slagging.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

3.2. The recommendation of 50 μ m perforation of single RFL-C2000S core.

RFL-C2000S Parameters of oxygen perforation of 20mm carbon steel (for reference only).

	Power W	Duty Cycle %	Frequency Hz	Nozzle height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High	2000	100	200	12	1	0	200	
								200
Middle	2000	45	150	8	0.7	-4	400	
								200
Low	2000	55	150	4	0.6	-6	3000	

3.3. Parameters of nitrogen perforation for 8mm stainless steel (for reference only).

	Power W	Duty Cycle	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High	2000	100	1000	12	10	0	100	
								0
Middle	2000	50	1000	8	10	-5	500	
								0
low	2000	40	1000	4	10	-6	1000	

The perforation parameters take the limit thickness of carbon steel/stainless steel that can be penetrated at current power as an example. Punches are sorted step by step in sequence, with the high order being the first-level punch, and so on.

4.1.RFL-C3000S Cutting Parameter

Fiber Core: 50μ m Focus:150mm

RFL-C3000S continuous laser (50µm).

Material	Thickness (mm)	Speed (m/min)	Power (W)	Gas	Pressure (bar)		Focus Position	Cutting Height
	,,	(,			(Sui)	(mm)	(mm)	(mm)
	1	35		N ₂ /	10	1.58	0	1
	2	20	3000	Air	10	2.05	0	0.5
	2	5.5	1200		1.6	1.0D	+3	0.8
	3	4	2000		0.6	1.0D	+4	0.8
	4	3.5	2400		0.6	1.0D	+4	0.8
	5	3.2	2400		0.6	1.2D	+4	0.8
	6	2.7	3000		0.6	1.2D	+4	0.8
	8	2.2	3000		0.6	1.2D	+4	0.8
Carbon Steel	10	1.5	3000	O ₂	0.6	1.2D	+4	0.8
Steel	12	1	2400		0.6	3.0D	+4	0.8
	14	0.9	2400		0.6	3.0D	+4	0.8
	16	0.75	2400		0.6	3.5D	+4	0.8
	18	0.65	2400		0.6	4.0D	+4	0.8
	20	0.6	2400		0.6	4.0D	+4	0.8
	22	0.55	2400		0.6	4.0D	+4	0.8
	1	45			10	1.58	0	0.8
	2	24			12	2.05	0	0.5
	3	10			12	2.5\$	-0.5	0.5
	4	6.5			14	2.58	-1.5	0.5
tainless	5	3.6	3000	N ₂	14	3.05	-2.5	0.5
teel	6	2.7			14	3.05	-3	0.5
	8	1.2			16	3.58	-4.5	0.5
	10	0.8			16	4.05	-6	0.5
Aluminium (A1)	1	30	3000	N ₂	12	1.58	0	0.8
	2	18			12	2.05	0	0.5

8

Website: figtekindustry.com.au Email: info@figtek.com.au

Aluminium	3	8			14	2.05	-1	0.5
	4	6			14	2.5\$	-2	0.5
	5	3.2			16	3.05	-3	0.5
	6	2			16	3.05	-3.5	0.5
	8	0.9			16	3.5\$	-4	0.5
	1	28			12	1.58	0	0.8
	2	15			12	2.05	0	0.5
	3	6			14	2.5\$	-1	0.5
Brass	4	3	3000	N ₂	14	3.05	-2	0.5
	5	2.2			14	3.05	-2.5	0.5
	6	1.3			16	3.05	-3	0.5

Note: It is recommended to use air or nitrogen to cut carbon steel 1 and 2mm, the cutting speed is faster than that of oxygen, and there will be slight slag hanging.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

9

Website: figtekindustry.com.au Email: info@figtek.com.au

4.2 The recommendation of 50μm perforation of single RFL-C3000S core.

RFL-C3000S.Oxygen piercing parameters of 22mm carbon steel (for reference only).

	Power	Duty Cycle	Frequency	Nozzle height	Pressure	Focus	Punching Time	Stop Light
	W	%	Hz	mm	bar		ms	Blowing ms
High	3000	100	200	12	1	0	200	
								200
Middle	3000	45	150	8	0.7	-4	2500	
								200
Low	3000	55	150	4	0.6	-6	3000	

4.3.RFL-C3000S.Parameters of nitrogen perforation for 10mm stainless steel (for reference only).

	10101011	cc omy j.						
	Power W	Duty Cycle	Frequency Hz	Nozzle Height mm	Pressure bar	Focus mm	Punching Time ms	Stop Light Blowing ms
High	3000	100	1000	12	10	0	100	
								0
Middle	3000	35	1000	8	10	-5	500	
								0
Low	3000	35	1000	4	10	-6	1000	

The perforation parameters take the limit thickness of carbon steel/stainless steel that can be penetrated at current power as an example. Punches are sorted step by step in sequence, with the high order being the first-level punch, and so on.

5.1. RFL-C3300 Cutting Parameter:

Fiber Core:100 μ m Focus:150mm

			R		00 continuo	ıs laser (10	0 0μm).		
Material	Thickness	Speed	Power	Gas	Pressure	Nozzle	Focus Position	Cutting Height	Remark
	mm	m/min	W		(bar	(mm)	(mm)	(mm)	
	1	30	3300	N ₂ /	10	1.58	0	1	
	2	12	3300	Air	10	2.08	-1	0.5	1
	2	5.2	1800		1.6	1.2D	+3	0.8	
	3	4.5	1800		0.6	1.2D	+3	0.8	
	4	3.6	2400		0.6	1.2D	+3	0.8	
	5	3.2	2400		0.6	1.2D	+3	0.8	
Carbon	6	2.6	3300		0.6	1.2D	+3	0.8	
Steel	8	2.2	3300	\mathbf{O}_2	0.6	1.2D	+3	0.8	
	10	1.1-1	1800-2 200		0.5	3.0D	+2.5	0.8	2
	12	0.9-1	1800-2 200		0.5	3.5D	+2.5	0.8	
	14	0.8-0	2200-3 300		0.5	3.5D	+2.5	0.8	
	16	0.7-0	2200-3 300		0.5	4.0D	+2.5	0.8	
	18	0.65- 0.7	2200-3 300		0.5	4.0D	+2.5	0.8	
	20	0.55- 0.65	2200-3 300		0.6	4.0D	+3	0.8	
	22	0.5-0 .55	2200-3 300		0.6	4.0D	+3	0.8	
	1	35			10	1.58	0	0.8	
	2	13			12	2.08	-1	0.5	
	3	7			12	2.5S	-1.5	0.5	
Stainless	4	5.5	330	N_2	14	2.58	-2	0.5	
Steel	5	4	0		14	2.58	-2.5	0.5	
	6	3			14	3.08	-3	0.5	

	8	1.2			16	3.5S	-4	0.5																				
	10	0.8			16	4.0S	-5	0.5																				
	1	25	3300	N ₂	12	1.5S	0	0.8																				
	2	12			12	2.08	-1	0.5																				
	3	8			14	2.08	-1.5	0.5																				
	4	5			14	2.08	-2	0.5																				
	5	3			16	3.08	-2.5	0.5																				
	6	2			16	3.08	-3	0.5																				
	8	0.8			16	3.5S	-4	0.5																				
	1	22			12	1.5S	0	0.5																				
	2	12			12	2.08	-1	0.5																				
Brass	3	5		N_2	N_2	N_2	N_2	N_2	N_2	N ₂	N_2	14	2.5S	-1.5	0.5													
	4	3	330 0																					1 12	- 12	- 12	1 12	1 12
	5	2			14	3.08	-2.5	0.5																				
	6	1.3			16	3.08	-3	0.5																				

Note: It is recommended to use air or nitrogen to cut carbon steel 1 and 2mm, the cutting speed is faster than that of oxygen, and there will be slight slag hanging.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

5.2.100 μ m perforation reference for multi-module RFL-C3300 core.

RFL-C3300. Oxygen piercing parameters of 22mm carbon steel (for reference only).

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching Time	Stop Light Blowing
	W	%	Hz	mm	bar	mm	ms	
								ms
High Position	3300	100	200	12	1	0	100	
								200
Mid-position	3300	45	150	8	0.6	-5	200	
								200
Low Position	3300	50	150	4	0.6	-6	2500	

5.3.RFL-C3300. Parameters of nitrogen perforation for 10mm stainless steel (for

reference only).

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching	Stop Light
	W	%	Hz	mm	bar	mm	Time	Blowing ms
							ms	
High Position	3300	100	1000	12	10	0	200	
								0
Mid-Position	3300	50	1000	8	10	-5	500	
								0
Low-Position	3300	40	1000	4	10	-7	1000	

Website: figtekindustry.com.au Email: info@figtek.com.au

6.1.RFL-C4000 Cutting Parameter

Fiber Core:100 μ m Focus:150mm

RFL-C	C4000 conti	nuous l	aser (100	0μm).					
Material	Thickness (mm)	Speed (m/min)	Power (W)	Gas	Pressure (bar)	Nozzle mm	Focus Position mm	Cutting Height (mm)	Remark
	1	35	4000		10	1.58	0	1	

Carbon
Stool

Material	Thickness (mm)	Speed (m/min)	Power (W)	Gas	Pressure (bar)	Nozzle mm	Focus Position mm	Cutting Height (mm)	Remark	
	1	35	4000		10	1.5S	0	1		
	2	15	4000	N_2 /	10	2.08	-1	0.5	1	
	3	10	4000	Air	10	2.08	-1.5	0.5		
	3	4.5	1800		0.6	1.2D	+3	0.8		
	4	3.5	2400		0.6	1.2D	+3	0.8		
	5	3.2	2400		0.6	1.2D	+3	0.8		
	6	2.8	3000		0.6	1.2D	+3	0.8		
Carbon	8	2.3	3600		0.6	1.2D	+3	0.8		
Steel	10	2	4000		0.6	1.2D	+3	0.8		
	12	1.2	1800-220	\mathbf{O}_2	0.5	3.0D	+2.5	0.8	2	
	14	1	1800-220				0.5	3.5D	+2.5	0.8
	16	0.8	2200-260		0.5	3.5D	+2.5	0.8		
	18	0.7	2200-260		0.5	4.0D	+2.5	0.8		
	20	0.65	2200-260		0.5	4.0D	+3	0.8		
	22	0.6	2200-280		0.5	4.5D	+3	0.8		
	25	0.5	2400-300		0.5	5.0D	+3	0.8		
	1	40			10	1.58	0	0.8		
	2	20			12	2.08	-1	0.5		

	3	12			12	2.08	-1.5	0.5
Stainless	4	7			12	2.58	-2	0.5
Steel	5	4.5	4000	N_2	14	2.58	-2.5	0.5
	6	3.5			14	3.08	-3	0.5
	8	1.8			14	3.0S	-4	0.5
	10	1.2			16	4.0S	-5	0.5
	12	0.8			16	4.0S	-6	0.5
	1	30			12	1.58	0	0.6
	2	20			12	2.08	-1	0.5
	3	13	4000		14	2.08	-1.5	0.5
	4	7		N_2	14	2.5S	-2	0.5
Aluminiu	5	5			14	2.58	-2.5	0.5
n (Al)	6	3			16	3.08	-3	0.5
	8	1.3			16	3.08	-4	0.5
	10	0.8			16	3.58	-5	0.5
	1	28			12	1.58	0	0.6
	2	15			12	1.5S	-1	0.6
	3	8			14	2.08	-1	0.6
Brass	4	5	4000	N_2	14	2.5S	-2	0.5
	5	3	-		14	3.0S	-2	0.5
	6	2.5			16	3.08	-2.5	0.5
	8	1			16	3.0S	-4	0.5

Note 1: It is recommended to cut carbon steel 1-3mm with air or nitrogen, and the cutting speed is faster than that with oxygen, with slight slag hanging.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

6.2.100 μ m perforation reference for multi-module RFL-C4000 core.

RFL-C4000. 25mm carbon steel perforation parameters (for reference only).

	Power	Duty Cycle	Frequency	Nozzle Height	Pressure	Focus	Punching Time	Stop Light Blowing ms
	W	%	Hz	mm	bar	mm	ms	Diowing ins
High Position	4000	100	200	12	1	0	100	
								300
MidPosition	4000	45	200	8	0.6	-5	200	
								300
Low Position	4000	50	200	4	0.6	-6	3000	

6.3.FL-C4000. Parameters of nitrogen perforation for 12mm stainless steel (for reference only).

	Power	Duty Cycle	Frequency	Nozzle height	Pressure	Focus	Punching Time	Stop Light
	w	%	Hz	mm	bar	mm	ms	Blowing ms
High position	4000	100	1000	12	10	0	100	
								0
Mid-position	4000	50	1000	8	10	-6	500	
								0
Low post	4000	45	1000	4	10	-8	1500	

7.1. RFL-C6000 Cutting Parameter

Fiber Core:100 μ m Focus:100mm

		R	FL-C600	00 con	tinuous l	aser (1	00μm).		
Material	Thickness	Speed	Power	Gas	Pressure	Nozzle	Focus Position	Cutting Height	Remark
	mm	m/min	W		bar	mm	mm	mm	
	1	45			12	1.5S	0	1	
	2	25		NO/	12	2.0S	-1	0.5	
	3	14	6000	N2/	14	2.0S	-1.5	0.5	
	4	8		Air	14	2.08	-2	0.5	1
	5	6.4			16	3.08	-2.5	0.5	
	6	5			16	3.58	-3	0.5	
	3	3.6-4.2	2400		0.6	1.2E	+3	0.8	
	4	3.3-3.8	2400	00 00 00 00	0.6	1.2E	+3	0.8	_
	5	3-3.6	3000		0.6	1.2E	+3	0.8	
	6	2.7-3.2	3300		0.6	1.2E	+3	0.8	
	8	2.2-2.5	4200		0.6	1.2E	+3	0.8	
	10	2.0-2.3	5500		0.6	1.2E	+4	0.8	
Carbon Steel	12	0.9-1	2200		0.6	3.0D	+2.5	0.8	
	12	1.9-2.1	6000	O ₂	0.6	1.2E	+5	0.8	2
	14	0.8-9	2200		0.6	3.5D	+2.5	0.8	
	14	1.4-1.7	6000		0.6	1.E	+5	1	
	16	0.8-0.9	2200		0.6	4.0D	+2.5	0.8	
	16	1.2-1.4	6000		0.6	1.4E	+6	1	
	18	0.65-0.75	2200		0.6	4.0D	+2.5	0.8	_
	20	0.6-0.7	2400		0.6	4.0D	+3	0.8	
	22	0.55-0.65	2400		0.6	4.0D	+3	0.8	
	25	0.5	2400	1	0.5	5.0D	+3	1	
tainless	1	60	(000	76. T	10	1.5S	0	0.8	
Steel	2	30	6000	N_2	12	2.08	-1	0.5	
	3	18			12	2.5S	-1.5	0.5	
	4	12			14	2.5S	-2	0.5	

Website: figtekindustry.com.au Email: info@figtek.com.au

14 3.08 -2.5 0.5 15 3.08 -3 0.5 16 5 15 3.08 -4 0.5 17 12 1.2 14 1 1 16 0.6 18 0.5 10 2 20 5.08 -11 10 1.2 1.2 10 1.2 1.2 11 50 2 2.5 3 16 4 10 5 6 4 10 5 6 4 10 5 6 4 10 5 6 4 10 5 6 4 10 12 1.2 1.2 12 0.7 14 0.5 16 0.4 14 2.58 -3 0.5 18 4.08 -5 0.5 18 4.08 -5 0.5 18 4.08 -5 0.5 18 4.08 -5 0.5 18 4.08 -5 0.5 18 4.08 -5 0.5 19 12 2.08 -1 0.5 10 1.2 18 3.58 -4.5 0.5 11 40 2 20 5.08 -8 0.3 10 1 40 4 9 5 5.5 6 6 3.8 8 1.8 10 1 1 4 3.08 -2 0.5 14 3.08 -2 0.5 14 3.08 -2 0.5 14 3.08 -2 0.5 14 3.08 -2 0.5 14 3.08 -2 0.5 15 3.08 -2 0.5 16 3.08 -2 0.5 17 18 4.08 -4 0.3 18 4.08 -4 0.3 18 4.08 -4 0.3 18 4.08 -4 0.3 19 10 10 10 10 10 10 10				-					
S		5	8			14	3.08	-2.5	0.5
10		6	5			15	3.08	-3	0.5
12		8	3.8			15	3.08	-4	0.5
14		10	2			15	3.5S	-6	0.5
16		12	1.2			16	3.5S	-7.5	0.5
18		14	1			16	4.08	-9	0.5
1 50 1 1 1 1 1 1 1 1 1		16	0.6			18	4.08	-10.5	0.5
1 50 2 25 3 16 4 10 5 6 4 10 5 6 6 4 10 1 1 1 1 1 1 1 1		18	0.5			20	5.08	-11	0.3
12 2.08 -1 0.5 3 16 4 10 5 6 6 4 8 2 16 3.08 -3 0.5 14 2.58 -3 0.5 16 3.08 -4 0.5 18 4.08 -5 0.5 18 4.08 -5 0.3 1 40 2 20 3 14 4 9 4 9 5 5.5 6000 Brass 5 5.5 6000 Brass 8 1.8 10 1 12 2.08 -1 0.5 14 3.08 -2 0.5 14 3.08 -2 0.5 14 3.08 -2 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 17 18 2.58 -1 19 19 2.58 -1 10 1 2 2.08 -1 10 3.58 -3 0.5 1		20	0.3			20	5.08	-12	0.3
14 2.58 -1.5 0.5 14 2.58 -2 0.5 14 2.58 -2 0.5 14 3.08 -3 0.5 16 3.08 -3 0.5 16 3.08 -4 0.5 18 4.08 -5 0.5 18 4.08 -5 0.3 1 40 2 20 3 14 4 9 Brass 5 5.5 6 3.8 8 1.8 1.8 10 1 1 14 2.58 -1.5 0.5 14 3.08 -3 0.5 15 3.08 -4 0.5 16 3.08 -4 0.5 18 4.08 -5 0.3 1 40 2 20 12 2.08 -1 0.5 14 3.08 -1.5 0.5 14 3.08 -2 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5 17 18 2.58 -1 19 2.58 -1 2 2.58 -1 3 3.58 -2 4 3.58 -2 5 5.5 5.5 6 3.8 7 7 7 7 7 7 7 7		1	50			12	1.5S	0	1
Aduminium A		2	25			12	2.08	-1	0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	16	6000		14	2.5S	-1.5	0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	10			14	2.58	-2	0.5
Brass Soluminium Soluminiu		5	6			14	3.08	-3	0.5
8 2 10 1.2 12 0.7 14 0.5 16 0.4 2 20 3 14 4 9 5 5.5 6 3.8 8 1.8 10 1 10 1 10 1 10 1 16 3.58 -4 0.5 18 4.08 -5 0.3 12 1.58 0 1 12 2.08 -1 0.5 14 2.58 -1 0.5 14 3.08 -1.5 0.5 16 3.08 -2.5 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5	luminium	6	4			16	3.08	-3	0.5
12 0.7 14 0.5 18 4.08 -5 0.3 16 0.4 20 5.08 -8 0.3 1 1 40 2 20 3 14 4 9 12 2.08 -1 0.5 14 2.58 -1 0.5 14 3.08 -2 0.5 16 3.8 18 1.8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141111111111111	8	2		N ₂	16	3.08	-4	0.5
14 0.5 16 0.4 1 40 2 20 3 14 4 9 5 5.5 6 3.8 8 1.8 10 1 18 4.08 20 5.08 12 1.58 0 0 12 2.08 12 2.08 14 2.58 -1 0.5 14 3.08 -1.5 0.5 16 3.08 -2.5 0.5 16 3.58 -3 0.5 16 3.58 -3 0.5		10	1.2			18	3.58	-4.5	0.5
16 0.4 20 5.08 -8 0.3 1 4 12 1.5S 0 1 1 2 2.0S -1 0.5 14 2.5S -1 0.5 14 3.0S -1.5 0.5 16 3.0S -2 0.5 16 3.5S -3 0.5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12	0.7			18	4.08	-5	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	0.5			18	4.08	-5	0.3
Brass $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	0.4			20	5.08	-8	0.3
Brass		1	40			12	1.58	0	1
Brass $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	20			12	2.0S	-1	0.5
Brass 5 5.5 6000 14 3.08 -2 0.5 16 3.08 1.8 16 3.58 -3 0.5 16 3.58 -3 0.5		3	14			14	2.58	-1	0.5
Brass 5 5.5 6000 14 3.08 -2 0.5 6 3.8 16 3.08 -2.5 0.5 8 1.8 16 3.58 -3 0.5 10 1 16 3.58 -3 0.5	Brass	4	9		N_2	14	3.08	-1.5	0.5
8 1.8 10 1 16 3.58 -3 0.5 16 3.58 -3 0.5		5	5.5	6000		14	3.0S	-2	0.5
10 1 16 3.58 -3 0.5		6	3.8			16	3.08	-2.5	0.5
		8	1.8			16	3.58	-3	0.5
12 O.7 18 4.0S -4 0.3		10	1			16	3.58	-3	0.5
		12	0.7			18	4.0S	-4	0.3

Note: It is recommended to cut carbon steel 1-6mm with air or nitrogen. The cutting speed is faster than that with oxygen, and there will be slight slag.

Note 2: According to the difference of gas purity and plate quality on site, the power used for debugging and the speed of debugging will be different.

Note: The parameters marked in red in the table are proofing parameters, which are greatly influenced by various factors in actual processing. They are only suitable for small-scale production, and mass production and processing are not recommended. It is recommended to use higher power lasers.

7.2. 100µm perforation reference for multi-module RFL-C6000 core.

RFL-C6000. 25mm carbon steel perforation parameters (for reference only)

	Power	Duty Cycle	Frequency	Nozzle height	Pressure	Focus	Punching Time	Stop Light Blowing
	W	%	Hz	mm	bar	mm	ms	ms
High position	6000	50	300	18	1	0	100	
								300
Mid-position	6000	45	300	12	0.8	-5	500	
								300
Low Position	6000	45	300	8	0.7	-6	1000	

7.3.RFL-C6000. Parameters of nitrogen perforation for 20mm stainless steel (for reference only).

	Power W	Duty Cycle %	Frequency Hz	Nozzle Height mm	Pressure bar	Focu s mm	Punching Time ms	Stop Light Blowing ms
High Position	6000	100	800	12	10	0	100	
								0
Mid-Position	6000	60	600	8	10	-6	500	
								0
Low-Position	6000	45	600	4	10	-8	1500	

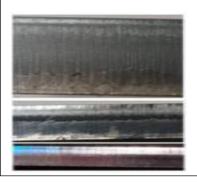
8. Poor Cutting & Solutions.

End face schemati	problem description	Possible reasons	solution
c C	Produce drops. Small regular burrs.	Focus is too low; The feed rate is too high.	Raise the focus; Reduce the feed rate.
	Irregular filiform burrs growing on both sides, large plate. Surface discoloration		Lower the focus; Increase the feed rate; Increase air pressure.
	Long irregularities are generated only on the cutting side. The burr.	Nozzle is not aligned; Focus is too high; The air pressure is too low; Speed is too low.	
\ \ \			Press the pause button immediately to prevent slag splashing on the focusing mirror; Reduce the feed rate; Increase power; raise focus
	Material is discharged from above.	feed rate is too large;	Press the pause button immediately to prevent slag splashing on the focusing mirror; Increase power; Reduce the feed rate; decrease atmospheric pressure

20

Website: figtekindustry.com.au Email: info@figtek.com.au

	The index line at the bottom is		Reduce the feed rate; Increase
	very.		laser power; Increase gas.
	The large offset,	is too low;	Pressure; Lower focus.
		The air pressure is	
		too low; focus	
	Cut at the bottom.	Too high	
	Wider mouth.		
	The burr on the bottom	The feed rate is too	Reduce the feed rate; Increase air
	surface is similar to slag, which	high; The air pressure	pressure; Lower focus.
	is in the form of drops and	is too low; Focus too	
	contained.Easy to remove	high.	
74574	On the bottom.	The feed rate is too	Reduce the feed rate; increase
	Metal burrs are difficult to	high;	Air pressure; Use a purer gas;
	remove.	The air pressure is	Lower focus.
	Temove.	too low; Impurity of	Hower rocas.
		gas; Focus too high.	
	Just on one side.	Nozzle is not aligned;	
	There are burrs on it.	spurt	Center the nozzle; Replace nozzle.
		The mouth is defective.	
			Press the pause button
	Material is discharged from	Power is too low; The	immediately to prevent slag
	above.	feed rate is too high.	
			splashing on the focusing mirror;
			Increase power;Reduce the feed
			rate.
		Focus is too high;	Lower the focus; Reduce the gas
	Rough cutting surface.	Atmospheric	pressure; Increase the feed rate;
		pressure is too high;	coolant
		feed rate	
		Too low; Material too	
		hot.	



	Generate craters	press The low; high plate Wor Hea	ospheric sure is too high; feed rate is too Focus is too ; Rust on the surface; kpiece passing at; Material is oure.	Reduce air pressure; Increase the feed rate; Lower the focus; Use better quality materials.
Cutting gap is too narrow:	Cutting section		Possible reason	s
The upper layer is streaked, and slag scraping appears due to insufficient oxygen on the lower surface of the slit.			The feeding spee	Focus is too low.
			Ai	r pressure is too low.

Nozzle too small.

Nozzle height is too low.

9.Nozzle Selection of Cutting Process

Nozzle name	Name symbol	Nozzle profile	Shape characteristics	use
Single Layer	S(Single)		The inner wall is conical, and the slag blowing gas flow rate of high-pressure gas is large.	Melting cutting of stainless steel, aluminum plate and other materials.
Double-Layer	D(Double)	复合 单层	Double-layer compounding adds inner core on the basis of single layer.	Double layer size above 2.0 is used for cutting carbon steel sand surface.
High Speed Double-Layer	E		The nozzle is pointed in shape, and the inner core edge has three holes compared with the common one. Large layer	Mainly used for high-power and high-speed smooth cutting of carbon steel.
High Speed Single-Layer	SP		The nozzle is pointed in shape and the inner wall is conical or stepped round.	Mainly used for high-power and high-speed glossy cutting of thick carbon steel.
Storm Nozzle	B(Boost)	5.01	On the basis of single-layer nozzle, there is one layer at the nozzle mouth. steps	Can be used for cutting stainless steel with high power nitrogen and low pressure.